Machine learning approaches for the prediction of signal peptides and other protein sorting signals.
نویسندگان
چکیده
Prediction of protein sorting signals from the sequence of amino acids has great importance in the field of proteomics today. Recently, the growth of protein databases, combined with machine learning approaches, such as neural networks and hidden Markov models, have made it possible to achieve a level of reliability where practical use in, for example automatic database annotation is feasible. In this review, we concentrate on the present status and future perspectives of SignalP, our neural network-based method for prediction of the most well-known sorting signal: the secretory signal peptide. We discuss the problems associated with the use of SignalP on genomic sequences, showing that signal peptide prediction will improve further if integrated with predictions of start codons and transmembrane helices. As a step towards this goal, a hidden Markov model version of SignalP has been developed, making it possible to discriminate between cleaved signal peptides and uncleaved signal anchors. Furthermore, we show how SignalP can be used to characterize putative signal peptides from an archaeon, Methanococcus jannaschii. Finally, we briefly review a few methods for predicting other protein sorting signals and discuss the future of protein sorting prediction in general.
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملIn silico prediction of anticancer peptides by TRAINER tool
Cancer is one of the causes of death in the world. Several treatment methods exist against cancer cells such as radiotherapy and chemotherapy. Since traditional methods have side effects on normal cells and are expensive, identification and developing a new method to cancer therapy is very important. Antimicrobial peptides, present in a wide variety of organisms, such as plants, amphibians and ...
متن کاملSports Result Prediction Based on Machine Learning and Computational Intelligence Approaches: A Survey
In the current world, sports produce considerable statistical information about each player, team, games, and seasons. Traditional sports science believed science to be owned by experts, coaches, team managers, and analyzers. However, sports organizations have recently realized the abundant science available in their data and sought to take advantage of that science through the use of data mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering
دوره 12 1 شماره
صفحات -
تاریخ انتشار 1999